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Abstract 

Design techniques for non-linear dynamic systems are closely related to their stability properties. Stability results can be used to design a 
reliable controller. This paper discusses the stability analysis of the dynamic neural network control (DNNC) The results from DNNC 
stability analysis will be used to define the neural network stability index (NNSI). The NNSI is a practical index which in current form can 
only be used with DNNC structures. The NNSI can be used to determine the optimal DNNC network structure. In addition, we will provide 
guidelines for the design of an optimal DNNC network structure for the conventional neural network structure for model-based control 
strategies. In this study, DNNC will be designed for a non-isothermal CSTR as an example of a wide class of non-linear processes. 0 1997 
Elsevier Science S.A. 
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1. Introduction 

During the last decade, application of neural networks for 
identification and control purposes has increased exponen- 
tially and applied widely and successfully in many areas [ l- 
lo]. These widespread applications have been due to several 
attractive features of neural networks. For example, neural 
networks have the potential to model very complicated non- 
linear systems [ 1 l-151. They can be trained easily by using 
past data records from systems under study. They are readily 
applicable to multivariable systems [ 151. They have the abil- 
ity to infer general rules and extract typical patterns from 
specific examples and recognize input-output mapping par- 
ameters from complex multi-dimentional field data [ 16,171. 
These facts suggest that neural networks, in conjunction with 
a suitable control strategy such as model-based control 
[4,10,1 g-201, differential-geometric control [ 6,2.1,22], and 
neuro-fuzzy control [23] can be used to control non-linear 
systems. 

Neural networks are now widely used in many non-linear 
control applications [ 3,5,6,23,24] _ Typical neural network 
models are complex and have several nodes in the input and 
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hidden layers, as well as a large number of weights and bias 
terms. Since the neural network models are frequently com- 
plex, the calculation of the inverse of the process models for 
the design of the controller is oftentimes not trivial. Therefore, 
it is difficult to study the stability issue of neural network- 
based control systems. It is also difficult to design an optimal 
neural network structure for identification and control pur- 
poses for the same reason. Therefore, it is important to reduce 
the complexity of the mathematical expressions of the neural 
network models to analyze the stability of the neural-based 
control system and design an optimal network structure for 
control purposes. Jin et al. [ 251 and Narendra and Parthas- 
arathy [3], provide stability analysis for a simple type of 
neural network and stress the importance of studying the 
stability properties of neural network models. 

The stability analysis of neural-based control systems is an 
important issue which must be considered for the design of a 
good neural-based control system [ 15,251. There are several 
methods which have been proposed to study the open-loop 
and closed-loop stability of processes and to analyze and 
design control systems [26]. State-space methods are best 
suited for analysis and synthesis of non-linear systems and 
they can be applied to the design of optimal control systems 
[ 261. Once the systems are transformed into state-spacemod- 
els, non-linear model approaches such as geometric control 
[ 6,21,22], neuro-fuzzy control [ 23.241, fuzzy logic control 
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Fig. I. Comparison between conventional neural network structure and DNNC network structure: (a) typical neural network 
DNNC process model; (c) typical single-layer DNNC process model. 
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[ 271, and model-based control [ 4,6,10,1 S-201 can be used 
to design and analyze the controller performance. In addition, 
the Liapunov theory [ 26,281 can be used for stability analysis 
[ 15,25,29,30]. Liapunov stability theory plays an important 
role in the stability analysis of control systems described by 
state-space equations. The second method of Liapunov 
[26,28] is most commonly used and is applicable to both 
linear and non-linear systems. This method is also suited for 
the stability of non-linear systems for which exact solutions 
may be unobtainable such as neural network models. 
Although the second method of Liapunov is applicable to a 
wide class of non-linear systems including neural network 
systems for stability analysis, obtaining successful results is 
not trivial. Therefore, experience may be necessary to inter- 
pret correctly the results from the stability analysis of non- 
linear systems. 

DNNC network structure for identification and control pur- 
poses, and to analyze the controller performance. 

The structure of the paper is as follows. First, a brief intro- 
duction on stability analysis will be given. Next, the stability 
analysis of DNNC will be discussed according to the Liapu- 
nov theory, and the neural network stability index (NNSI) 
will be introduced. The NNSI index will be used to determine 
an optimal DNNC network structure, to design an optimal 
DNNC controller, and to analyze the controller performance. 
Finally, an optimal DNNC neural network structure will be 
designed for the non-isothermal CSTR as an example of a 
wide class of non-linear processes. 

2. Dynamic neural network control (DNNC) 

Recently, Nikravesh [ 151 and Nikravesh et al. [5] pro- Fig. 1 (a) shows the structure of a conventional neural net- 
posed dynamic neural network control (DNNC) as a control work. The typical neural network has an input layer, an output 
strategy. DNNC is a simple neural network model-based con- layer, and at least one hidden layer. Each layer is fully con- 
trol strategy. Although the DNNC network structure is sim- nected to the succeeding layer with corresponding weights. 
ple, it has demonstrated the potential for controlling a wide In this case, only the neighboring layers are connected to each 
class of non-linear systems. The objectives of this paper are other. The weights represent the current state of knowledge 
to study the stability of DNNC, to determine the optimal of the network and are adjusted to improve the network per- 
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Fig. 2. Block diagram of simplified DNNC strategy in IMC framework, 

formance. In general, the performance of neural networks is 
a function of hidden layer topology. During the past several 
years, it has been shown that the performance of conventional 
neural networks for prediction can be increased by connecting 
certain nodes in a specific layer to certain nodes in the non- 
succeeding layer. For example, one can also connect certain 
nodes in the input layer to certain nodes in the output layer. 
Using this concept, the multi-layer DNNC model (Fig. 1 (b) ) 
has been introduced. It is clear that complex networks are 
capable of modeling more complicated behavior than our 
simple model. However, it is our contention that many highly 
non-linear systems can be handled with the simple structure 
of DNNC. In this study, a single layer DNNC (Fig. 1 (c) ) is 
used. If desired, it is easy to expand the new methodology to 
the multi-layer DNNC case. 

In the following section, a brief overview of DNNC will 
be given. Then the stability analysis of the DNNC process 
model and controller will be discussed. In this paper, we 
present the DNNC controller in an IMC framework as shown 
in Fig. 2. In Fig. 2, Y, is the controlled variable (measured), 
Y,, is neural network prediction, U is the manipulated vari- 
able (predicted), Yet is the setpoint, and D is the disturbance. 
GP is the actual process model, GNN is the neural network 
model of the process, Gi is the inverse of the process model 
(for the ideal case), and G, is the filter transfer function. 
Details of IMC and IMC filter design are available throughout 
the literature [ 15,19,3 l-341. However, DNNC can be 
employed in a more general model predictive control (MPC) 
framework. For example, DNNC can be employed in DMC 
framework. Details of such a DNNC controller are given in 
ref. [15]. 

2.1. State-space representation of DNNC 

Fig. 1 (c) shows DNNC network structure. The input-out- 
put mapping of the DNNC [ 151 can be represented by, 

y(k+ 1) =w,T(w;Auy+B,) +B, (1) 

Auy= [Au(k)Au(k- l)...Au(k-N+2)u(k-N+ l)y,(k)]’ 

W, = [Wl IW1*..WINWIN+ ,lT 

Uz) =z 
where W, is neural network weight, input-hidden layer; B, is 
neural network bias, hidden layer node; wz is neural network 
weight, hidden-output layer; B, is neural network bias, output 
layer; ym is controlled variable, measured value; y is con- 
trolled variable, neural network prediction; u is manipulated 
variable, measured value; Tis neuron transfer fuction. 

Substituting Au(k-j+2) =u(k-j+2) -u(k-j+ 1) 
into Eq. ( 1) and y(k) = y,( k) gives, 

y(k+ 1) =~$(Aw;uy+B,) +B, 

u-j= [u(k)u(k- I).-.u(k-N+2)u(k-N+ l)y(k)]’ 

(2) 
Aw,=[wl,(wl,-wl,)~~~(wl,-~~l~-,)~1~+~]~ 

Eq. (2) can be written in the following discrete state-space 
form, 

4k-t 1) =f(x(k)) +g(x(k)dk)) 

y(k) =W-‘(x(k),u(k))) (3) 

y(k+ 1) =h(x(k),u(k)) 

with x(k) given by, 

x(k) = [x,(k)xz(k)...xhi-l(k)xhr(k)lT 
= [u(k- l)u(k-2)...u(k-N+ l)y(k,lT (4) 

Therefore, x( k + 1) is given by, 

x(k+ 1) = [.x,(k+ l)x,(k+ l)...x,-,(k+ l)x,(k+ l)lT 
= [u(k)u(k- l).-.u(k-N+2)y(k+l)]T 
= [u(k)x,(k)...X,-,(k)h(x(k),u(k))lT 

(5) 

with, 
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f(x(k)) = [Ox,(k) xz(k)...X,,-z(k) OIT 
g(x(k),u(k)) = [u(k) 0 O...O 0 h(x(k),u(k))lT 

h(x(k),u(k)) =y(k+ 1) =w,T(AwTuy+B,) +B2 

(6) 

Aw’?= [Aw,,,Aw,,~...Aw,.N-,w,,N+,I~ 
uyc= [u(k- l)u(k-2)...u(k-N+2)u(k-N+ I>y(k)lT 

v(k)=v(k-l)+(l-cp)[y”“‘(k)-d(k),-y(k)] 

d(k) =x,,(k) -y(k) 

T-‘(z) = -0.5 In E c 1 2.2. Closed-loop stability under the DNNC 

In this study, we are interested in the stability of the overall 
process. In the DNNC strategy in the IMC framework 
(Fig. 2) and with an exact model for the process, the stability 
of both the process and controller is sufficient for overall 
system stability [ 151. In this section, the stability of the 
DNNC process model and controller model will be presented. 

In this case, the state-space representation of the controller 
(Eq. ( 10)) is given by, 

x(k+l)= 

-wl,+,. 
‘PI Pz P3 . fL-2 &-I -7 I 

1 000 0 0 0’ 

010.0 0 0 

..*.a a 0 

000.0 0 0 

oooa 1 0 0 

_oooa 0 0 0 . 

2.2.1. Stability of the DNNC process mode 
The stability of the process model according to Liapunov 

theory is guaranteed if the eigenvalues of the Jacobian of 
x(k + 1) with respect to x(k) are inside of the unit circle. In 
this case, the Jacobian is given by, 

Jy = 

1 
(7) 
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The stability of the controller according to Liapunov is 
guaranteed if the eigenvalues of the Jacobian of x( k + 1) with 
respect to x(k) are inside of the unit circle. In this case, the 

The non-zero eigenvalue of the Jacobian matrix Jy is given 

by, 

A= (1 -yl(k)2)w1N+,~2 (9) 
Jacobian is given by, 

-wlN+I- 
wl, 
0 
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2.2.2. Stability of the DNNC controller 
The DNNC controller will be defined using the inverse of 

the DNNC process model and is given by the following equa- 
tions [ 1.51: 

p= 

(10) u(k) = 

(12) with, 



M. Nikravesh et al. /Chemical Engineering Journal 68 (1997) 41-50 45 

The non-zero eigenvalues of the Jacobian matrix Jo are the 
solutions of the following characteristic equation: 

(13) 

2.3. Optimum DNNC network structure 

The results from DNNC stability analysis will be used to 
define the neural network stability index (NNSI). In this 
study, several indexes have been examined. It has been found 
that one of these indexes has a clear and one-to-one relation- 
ship with the closed-loop stability performance of DNNC. 
Neural network stability index (NNSI) is given in Table 1. 
As shown in Table 1, the NNSI is a function of the number 
of eigenvalues of the process model (N,) , the number of 
eigenvalues of the inverse of the process model (No), eigen- 
values of the process model (JY), and eigenvalues of the 
inverse of the process model (Jo). The NNSI is a practical 
index which in current form can only be used with DNNC of 
the structure. The NNSI can be used to determine the optimal 
DNNC network structure. In addition, NNSI provides guide- 
lines for the design of an optimal DNNC network structure 
for the conventional neural network structure for model- 
based control strategies. 

In this section, we would like to answer the following 
question, “What is the optimum DNNC network structure 
for an acceptable controller performance?” To answer this 
question, the neural network stability index (NNSI) is 
defined (Table 1) . Based on NNSI, the optimum number of 
nodes in the input layer (past information of manipulated 
variable, N) for an acceptable controller performance is 
defined as follows, 
Guideline 1. N is equal to 70% of the maximum number of 
nodes required to model the process for which the NNSI 
attains some constant value and if this constant value for the 
NNSI is less than 0.50. 
Guideline 2. N is equal to the maximum number of nodes 
required to model the process for which the NNSI attains 
some constant value and if this constant value for NNSI is 
greater than 0.50. 

Therefore, the optimum number of nodes required to model 
the process for an acceptable controller performance is given 
by the maximum value for N which is obtained from guide- 

Table 1 
Neural network stability index (NISI) 

1 
t= 

A --> B 

C, 4 T 

“, Tt qc T, 
I c 

Fig. 3. Non-isothermal CSTR. 

lines 1 and 2. In addition, as we will show later, increasing 
the number of nodes in the input layer (DNNC network 
structure) results in the smaller value for the NNSI which 
implies a more stable process model and has a smoother and 
slower response. 

3. Simulation studies 

The performance of the DNNC strategy was tested on a 
non-isothermal CSTR with irreversible reaction (A -+ B) 
(Fig. 3). The process model consists of two non-linear ordi- 
nary differential equations and is given by [ 151, 

with & and & given by [ 35,361 

b,(t) =exp( -w) (14c) 

h,=&(t)h=(l-a,t)h (14d) 

where hd is the heat transfer coefficient, scaled; &h(t) is the 
fouling coefficient, 0 < &, < 1; (Y,, is the fouling constant; 
&(t) is the deactivation coefficient; cy, is the deactivation 
constant; C, is the effluent concentration, the controlled var- 

!$$J,j+,gJ”,, ~JY,,+~$Ju., Nu,$JY.,+N~,$ _ k$J~.,+i,gJu., 
I ,=I I 

2N, = 2N,I = 2N,N, - 2 

NY Number of eigenvalues; process model 

Nu Number of eigenvalues; inverse of the process model 

JY Eigenvalues; process model 

JU Eigenvalues; inverse of the process model 
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Table 2 
Nominal CSTR operating condition [ 15,191 

q= 100 I min-’ 
CA,= 1 mall-’ 
T,=350K 
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V=lOOl 
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!+=7.2XlO”‘min-’ 

$h(t)=(l-M) 
4,(t) =exp( -at) 

E/R= 9.95 X IO3 K 
-bH=2X 105calmol- 
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Fig. 4. Open-loop response of the CSTR for step changes in the coolant flow 
rate qc. 

iable; qc is the coolant flow rate, the manipulated variable; q 
is the feed flow rate, disturbance; C,, is the feed concentra- 
tion; Tf is the feed temperature; T,, is the coolant inlet tem- 
perature. The remaining model parameters and operating 
conditions are presented in Table 2. 

The open-loop step response for a series of step changes 
in qc is shown in Fig. 4. It is seen that the process is highly 
non-linear. Table 3 shows the neural network structures for 
DNNC and a conventional neural network (neural network 
internal model control (NIMC) as an example 1191) which 
were used for this study. The DNNC and NIMC models are 
trained using the backpropagation algorithm with data gen- 
erated by making random changes in qc. Table 4 shows the 
quantitative comparison between DNNC-2, DNNC-5, 
DNNC-10, DNNC-15, DNNC-25 and NIMC. In this study, 
DNNC-N refers to DNNC neural network model structure 
with N+2 input nodes representing current values for the 
manipulated variable (u(k)) and the controlled variable 
(y(k) ) and N past information of the manipulated variable 
(u( k - 1) to u( k - N) ) . DNNC-2 provides very good output 
prediction for a randomly generated disturbance in qc. Further 
improvements will be obtained by increasing the number of 
nodes (manipulated input) in the input layer. NIMC provides 
excellent output prediction for a randomly generated distur- 
bance in qc. Several performance measures show that the 
performance of DNNC- 15 for model identification is the 
same as NIMC. Although this is true, we note that the DNNC 
structure is very simple and on the average. has a small num- 
ber of nodes (total number of weights and bias terms is 7 to 

Table 3 
Comparison between DNNC-N and NIMC neural network structures 

Network structure Total number of weights and 
bias terms 

Input layer Hidden layer Output layer 

Dynamic neural network Ni5 Number of nodes N + 2 Number of nodes 1, transfer Number of nodes 1, transfer 
control [ 151 (DNNC-N) (current C, and current and function non-linear function linear prediction of 

N past values for qc) CA 
Dynamic neural network N= lON+5= 15 N = 10, Number of nodes Number of nodes 1, transfer Number of nodes 1, transfer 
control [ 151 (DNNC-IO) N+2= 12 (current C, and function non-linear function linear prediction of 

current and ten past values CA 
for qc ) 

Neural network internal 70 Number of nodes 6 (current Transfer function non-linear Number of nodes 1, transfer 
model control [ 191 (NIMC ) and two past values for qc function linear prediction of 

and C,) CR. 

Table 4 
Comparison between DNNC-N and NIMC neural network structures 

Neural network structure 
for the process model 

Mean (error) Standard (error) Sum squares (error) 

DNNC-2 0.0015 0.0069 0.013 
DNNC-5 0.00058 0.0066 il.01 15 
DNNC- 10 0.00042 0.0062 0.0101 
DNNC- 15 0.0017 0.0054 0.0082 
DNNC-25 0.0017 0.0054 0.0082 
NIMC [ 191 0.0017 0.0054 0.0082 
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Fig. 5. Neural network stability index (NNSI). 

20) in comparison with NIMC (total number of weights and 
bias terms is 70). 

3.1. Optimum DNNC network structure 

Eqs. (9) and ( 13) and Table 1 are used to calculate the 
NNSI for the DNNC process models and is shown in Fig. 5. 
Referring to Fig. 5, one can see that increasing the number 
of nodes in the input layer results in the smaller value for the 
NNSI which implies a more stable process model. In addition, 
referring to Fig. 5, one can see that for N2 15 the NNSI 
remains fairly constant. Therefore, the maximum number of 
nodes needed to model this process would be 15. The opti- 
mum number of nodes required to model the process with an 
acceptable controller performance is given by the maximum 
value for N obtained from guidelines 1 and 2, and is equal to 
15. (i.e. maximum nodes 15 and final value for NNSI 0.61, 
therefore for this case study N = 15). 

3.2. Controller performance based on the results from 
stability analysis 

To test the NNSI for interpreting controller performance 
without applying the controller, we considered the DNNC 
network model with different numbers of nodes in the input 
layer. Based on Fig. 5 we predict that DNNC-2 will have a 
faster but more oscillatory response than other DNNC struc- 
tures. In addition, we predict that DNNC-2 will be the least 
stable and DNNC- 15 will be the most stable controller. 

To illustrate the usefulness of the NNSI for predicting the 
DNNC controller performance, DNNC is applied to control 
the CSTR. DNNC was tuned with a filter constant value of 
0.95 (cp= 0.95). Fig. 6(a) and (b) show the disturbance 
rejection performance of the DNNC. In comparison to 
DNNC- 15 (for 10% and 20% change in inlet flow rate as 
disturbance), DNNC-2 exhibits a faster response toward set- 
point but with oscillatory performance. Comparing DNNC- 
15 to DNNC-10, one can find that DNNC- 15 shows a slower, 
but smoother response. 

Comparing the results extracted from Fig. 5 and the per- 
formance of the DNNC controllers in Fig. 6( a) and (b) , one 
can see that the conclusions are in good agreement. In brief, 

0.09 (a) ’ 
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__--_ DmC-7, 
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- DNNC-15 
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0 I 2 3 4 5 6 7 8 
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Fig. 6. (a) Disturbance rejection performance of DNNC, o/c 10 changes in 
qc: (b) disturbance rejection performance of DNNC, ‘%20 changes in q<. 

the results show that the controller with the smaller value for 
NNSI is more stable and has a smoother and slower response. 

3.3. Optimum DNNC controllerfor NIMC control strategy 

Referring to Table 4, one can see that the performance of 
DNNC-15 for model identification is the same as NIMC. 
Therefore, we predict that if we use the DNNC- 15 controller 
with the NIMC process model, the performance of this new 
hybrid model would be very close and even the same as the 
DNNC strategy with the DNNC- 15 structure. The same pre- 
diction will be expected for any NIMC-DNNC-N hybrid 
controller with N> 15. Figs. 7 and 8 show the controller per- 
formances for DNNC- 15 and NIMC-DNNC- 15. Comparing 
the controller performances of DNNC- 15 to NIMC-DNNC- 
15, one can clearly see that these controllers have exactly the 
same overall performance. 

4. Conclusions 

In this paper, detailed guidelines for the stability analysis 
of DNNC and conventional neural networks were presented. 
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Fig. 8. Disturbance rejection performance, NIMC-DNNC hybrid and DNNC. 

The results from the stability analysis were used to define the 
neural network stability index (NNSI) . The NNSI was used 
to determine the optimal DNNC network structure, to analyze 
the DNNC controller performance and to design a controller 
with an acceptable or predefined performaance. In addition, 
the results from the stability analysis were used to design an 
optimal DNNC neural network structure for identification and 
controller purposes for a conventional neural network process 
model (NIMC as an example) with an equivalent controller 
performance but less network structure complexity. 

5. Notation 

; 
J 

L(k) 

The controller strategies, DNNC and the hybrid DNNC- AUY 
conventional neural network (DNNC-NIMC) , were applied X 

to a non-isothermal CSTR as an example of a wide class of YI 
non-linear processes. Based on the stability analysis, an opti- YIIl 
mal neural network structure for an acceptable or predefined Y 

set 

controller performance was designed for this process. W 

bias 
transfer function 
Jacobian matrix 
manipulated input 
change in the input (manipulated variable) 
definedasu(k)-(k-l) 
as defined in Eq. ( 1) 
state variables 
output from hidden layer nodes 
current feedback measurement 
setpoint 
network weights 



hf. Nikravesh et al. /Chemical Engineering Joumnl68 (1997) 41-50 49 

Subscript 

1 input-hidden layer 
2 hidden-output layer 

Superscript 

Y process model 
U controller 
T transpose 
C as defined in Eq. (10) 

Greek letters 

; 
as defined in Eq. (8) 
as defined in Eq. ( 11) 

h eigenvalues 
A difference 
r neurons transfer function, as defined by Eq. (2) 

Non-isothermal CSTR 

A area 
CA concentration of component A 

CP heat capacity 
E activation energy 
h heat transfer coefficient for CSTR 

2 

heat transfer coefficient, scale 
rate constant 

4 flow rate 
T temperature 
V volume of the tank 

Greek letters 

ffc deactivation constant 

zi 
fouling constant 
heat of reaction 

&(t) deactivation coefficient 
A(t) fouling coefficient, 0 < 6 < 1 

P density of reactor content 

Subscripts 

C coolant 
f feed, inlet condition 
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